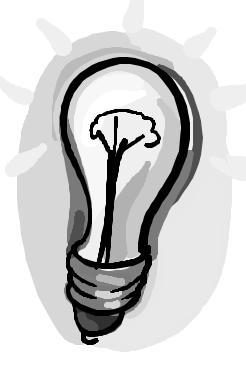
REQUEST FOR INNOVATIVE ELECTRICAL CONSERVATION PROGRAMS

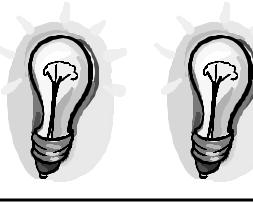
Gainesville City Commission Energy Conservation Workshop April 19, 2004

RFP Goals

- Enlist Private Sector's creativity & harness their industry knowledge
- Energy Conservation and peak power demand reductions
- Opportunities for local jobs and economic development
- Conserve natural resources and reduce air emissions


RFP Components

- GRU will pay for development of detailed Business Plans for innovative programs
 - Up to \$7,500
- Proposals to provide additional costeffective conservation
 - GRU will pay for proven performance


Not all conservation is created equal

- Some Conservation measures have more value to our customers than others......
- Considerations include:
 - Time of day (peak)
 - Fuel costs
 - Who benefits (conservation participant, rate-payer, society)?

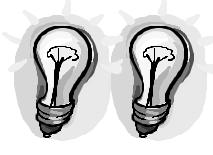
CAPACITY

CAPACITY = the facilities (generators, wires, etc) that provide the ability to turn the switch ON

• Two light bulbs require TWICE the CAPACITY of one

ENERGY

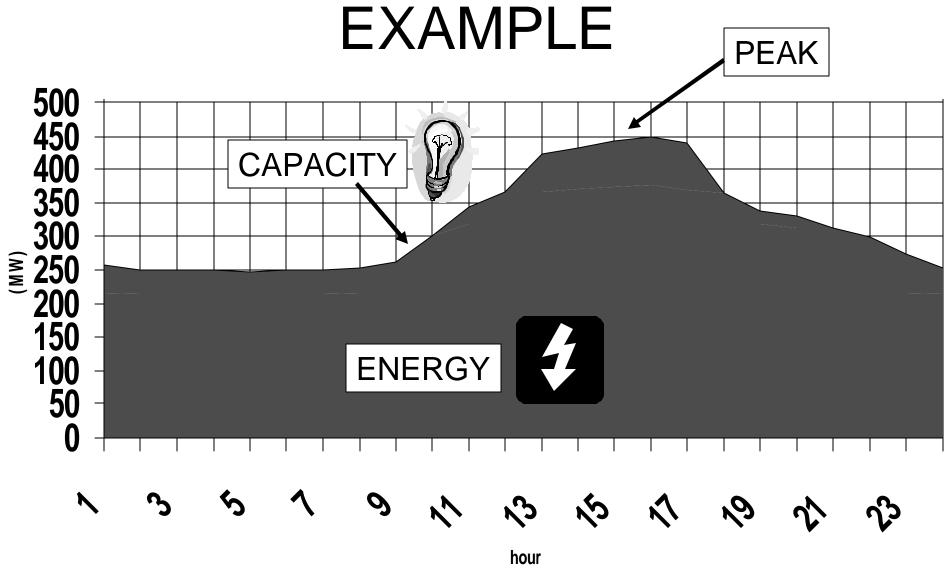
CAPACITY x TIME = ENERGY

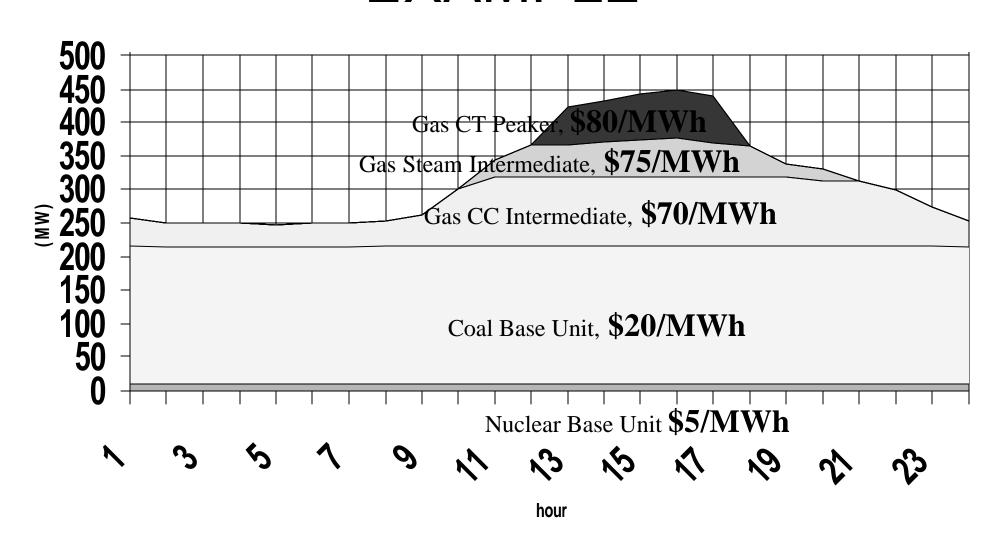


X

• 0.1 kW x

8 hours = 0.8 kWh




• 0.2 kW x

4 hours = 0.8 kWh

SUMMER LOAD SHAPE

SUMMER LOAD SHAPE EXAMPLE

Peak Periods – What are they?

- •May 15-October 15 12:00 noon - 9:00 p.m., weekends and holidays included;
- •January 1-February 28
 7:00 a.m. 11 a.m. and,
 6:00 p.m. 10:00p.m., weekends and
 January 1 excluded.

What are we looking for?

Reduced demand for capacity

Peak period energy reductions

- Verifiable results
- Consideration of free riders
- Consideration of rebound effect
- Consideration of use diversity

RFP Status

- Materials from Pre-Bid Meeting, March 12, 2004
 - PowerPoint Presentation
 - List of Questions Asked and Answers Provided
- Values for System Net Benefits for Proposal Evaluation:
 - Peak Power Demand Reduction (\$/kW),

- On-peak Energy Reduction (\$/kWh),
- Off-peak Energy Reduction (\$/kWh)
- Additional Bidder Questions

How were the Net Benefit Values derived?

- Determined value per MW of avoided new solid fuel capacity.
 - Capital Cost Reductions
 - Lost Opportunities to Replace Expensive Natural Gas
- Used EGEAS Generation Planning Optimization program
 - 1. Capital Costs
 - 2. Fixed Costs
 - 3. Variable Operating Costs
 - 4. Fuel Cost

Results

• PARTICIPANT BENEFITS

- Lower energy usage results in lower energy bills
- SYSTEM NET BENEFITS (RIM Test)
 Capacity On and Off Peak Avoided Cost Energy, net of:

- Avoided Production Costs
- Lost Fuel Savings Opportunities
- Lost Non-Fuel Revenues, e.g. T&D

Participant Benefits

Residential

\$0.077/kWh

Includes portion of rates designed to recover costs for transmission and distribution, as well as energy.

System Net Benefits

Residential

\$/kW

On-Peak Off-Peak \$61.88 \$26.35

\$/kWh

On-Peak Off-Peak (\$0.067) (\$0.091)

\$/kWh are negative because the avoided production costs do not outweigh the lost opportunity for lower fuel costs and lost non-fuel revenues

Application Example

Residential Air Conditioner Load Control

Participant

System

Reductions /						
		At Meter		At Plant		
On-Peak Demand Reduction (kW)		1		1.05		
Off-Peak Demand Reduction (kW)		0		0		
On-Peak Energy Savings (kWh)		100		105		
Off-Peak Energy Savings (kWh)		0		0		

4

Savings Depend on Perspective

Residential Air Conditioner Load Control

PARTICIPANT BENEFITS Energy Savings

 $($0.077 \times 100 \text{ kWh}) =$

\$7.70

SYSTEM NET BENEFIT VALUES

On-Peak Capacity Off-Peak Capacity (\$61.88 X 1.05) + (\$26.35 X 0) =

The Rest of the Story...

- Example of Residential Air Conditioner Load Control did not include:
 - Load Control Switch: \$300/customer or \$34/year
 - Typical Customer Incentive Payment: \$24/year
 - Operation and Maintenance: \$32/year
 - Total Program Cost: \$90/year
- System Net Benefit:

\$58/year

- Not Cost Effective for Our System
 - Unless Innovative Program is proposed without expense of switches

Another Example

• Ceiling Insulation (R-19 to R-30) Participant System

Reductions / /						
		At Meter		At Plant		
On-Peak Demand Reduction (kW)		0.3		0.32		
Off-Peak Demand Reduction (kW)		0		0.00		
On-Peak Energy Savings (kWh)		750		787.50		
Off-Peak Energy Savings (kWh)		0		0.00		

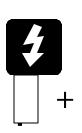
#

Savings Depend on Perspective

Ceiling Insulation (R-19 to R-30)

PARTICIPANT BENEFITS

Energy


(\$0.077 X 750)

\$57.75

SYSTEM NET BENEFIT VALUES

On-Peak Energy Off-Peak Energy

 $(\$-0.067 \times 787.50) + (\$-0.091 \times 0)$

On-Peak Capacity Off-Peak Capacity

 $(\$61.88 \times 0.32) + (\$26.35 \times 0) =$

(\$33.13)

What do the numbers mean?

- 1. Capacity savings benefit all of us by avoiding capital costs
- 2. Avoided Capacity saves capital costs but increases fuel costs
- 3. On-Peak Energy reductions are more valuable than Off-Peak (On-Peak energy is more expensive)
- Avoided Energy production costs in most cases do not outweigh the lost opportunity for lower fuel costs and lost base revenues, e.g. T & D

In Conclusion

- Energy Conservation will always benefit the participant's bill, although capital and other outlay may be required
- The All Rate Payers' Test (RIM) determines system benefits
- The value of conservation is affected by the benefits of adding solid fuel capacity

In Conclusion

 We are willing to pay for cost effective reductions in capacity and energy

 We are seeking innovative programs to deliver Energy Conservation incentives

Innovative Electrical Demand Side Management Programs RFP NO. 2004-060

- Proposals due by April 30, 2004 at 2:00 PM
- RFP contact:

Joann Dorval, Senior Buyer
Purchasing Division
P.O. Box 147117, Station A-130
Gainesville, FL 32614-7117
(352) 393-1253