Integrated Resource Plan Stakeholder Engagement Meeting Series

Stakeholder Meeting # 2 - June 6, 2023

Welcome

Cantrece Jones Acuity Design Group

IRP Stakeholder Meeting # 2 Agenda

Review of Stakeholder Meeting # 1

Cantrece Jones, Acuity Design Group Team

GRU and The Energy Authority

Eric Walters, GRU- Interim Chief Sustainability Officer

IRP Variables

Brad Kushner, Acuity Design Group Team

Open Discussion & Next Steps

Cantrece Jones, Acuity Design Group Team

Welcome

Eric Walters
Interim Chief
Sustainability Officer

Integrated Resource Plan
Get Connected | A community engagement process.

GRU and The Energy Authority

 The Energy Authority ("TEA"), is a non-profit entity that works on behalf of public power and other community owned organizations in the power and natural markets

- GRU is one of seven owners in The Energy Authority, joining in 1999
- Tony Cunningham, GRU's General Manager, is a Board member of TEA
- GRU utilizes many of TEA's services, including:
 - Bilateral energy trading
 - Natural gas trading
 - Portfolio management
 - Risk management
 - Advisory services
- TEA has completed over 20 IRPs for utilities operating in PJM, MISO, SPP, CAISO, and the bilateral Southeast and WECC
- TEA worked with GRU to complete its 2016 and 2019 IRP

IRP Variables

Brad Kushner Acuity Design Group

The IRP Process

IRP Variables

- What do we mean by "IRP Variables"
 - Factors that can be quantified
- Examples of IRP Variables
 - Economic Parameters
 - Load Forecast
 - Existing and Planned Resources
 - Need for Capacity
 - Fuel Prices
 - New Supply-Side Resources

Economic Parameters

- IRP Economic Evaluations Reflect:
 - Annual Inflation (Long Term) Rate: 2.3%
 - Discount Rate: 4.5%
 - Tax Exempt Bond Interest Rate: 4.5%
 - Finance Period (for Supply-Side Resources): 30 Years
 - Nuclear [Small Modular Reactors (SMR)]: 40 Years
 - Capital Recovery Factor (CRF):
 - **30 Years: ~6.5%**
 - **40 Years: ~6%**

- Energy and Peak Demand
 - Net Energy for Load GRU's overall energy requirements
 - Energy required by GRU's customers each year
 - Peak Demand
 - Maximum power required to serve GRU's customers for any given period
 - Energy and Peak Demand Forecasts:
 - Customer Growth
 - Electric Vehicles
 - Customer-Sited Renewables (Solar Distributed Generation)
 - Demand-Side Management/Energy Efficiency/Conservation

- Load Modifiers
 - Electric Vehicles (EVs)
 - Alachua County Department of Motor Vehicles (DMV) data
 - 1,826 EVs as of 1/1/23
 - Assume 75% charged by GRU
 - 1,370 EVs as of 1/1/23
 - S&P Commodity Insights
 - Florida EV load growth
 - EVs reach 8% of total on road vehicles by 2030
 - National Renewable Energy Laboratory (NREL) tool for charging load shape (slow charge)
 - Solar Distributed Generation
 - Start with current GRU data
 - Customer growth based on Florida solar distributed power generation forecast from S&P Global Commodity Insights (S&P)
 - Representative solar load shape for NE Florida applied

Projection of Electric Vehicles

Total

Battery

Plug-in Hybrid

Projection of Solar Distributed Generation

----Total

-----Residential

Net Energy for Load

Existing and Planned Resources

Plant Name	Unit Number	Primary Fuel Type	In-Service Date	Expected Retirement Date	Contribution to Summer Peak Demand (MW)	
J.R. Kelly	Combined Cycle 1	Natural Gas	5/2021	12/2051	112.0	
Deerhaven	Steam Turbine 2	Natural Gas	10/1981	12/2031	232.0	
Deerhaven	Steam Turbine 1	Natural Gas	8/1972	12/2027	76.0	
Deerhaven	Gas Turbine 3	Natural Gas	1/1996	12/2046	71.0	
Deerhaven	Gas Turbine 2	Natural Gas	8/1976	12/2026	17.5	
Deerhaven	Gas Turbine 1	Natural Gas	7/1976	12/2026	17.5	
South Energy Center	Gas Turbine 1	Natural Gas	5/2009	12/2039	3.8	
South Energy Center	IC 2	Natural Gas	12/2017	12/2047	7.4	
Deerhaven Renewable	Unit 1	Biomass	12/2013	12/2043	103.0	
Sand Bluff Solar	Solar	Solar	12/2024	12/2044	41.2	

Supply-Side Resources

- GRU Need for Capacity
 - ~140 MW beginning in Summer 2032
 - More than 410 MW by Summer 2047
- New Supply-Side Options Evaluated in IRP
 - Solar PV PPA (Utility Scale)
 - Energy Storage
 - Biomass
 - Natural Gas
 - Nuclear (Small Modular Reactors)
 - Efficiency Improvements for J.R. Kelly Combined Cycle
 - Transmission System Upgrades
 - Firm Capacity Purchase
- Sources Sargent & Lundy, U.S. Energy Information Administration

Supply-Side Resources

GRU Owned	Supply-Side Resource	Description	Finance Period	Max. Capacity Summer	Net Full Load Heat Rate Summer	Capital Costs	Capital Costs per kW	Variable O&M	Fixed O&M
			Years	Net MW	Btu/kWh	(2023 \$, Millions)	(2023 \$, Summer)	(2023 \$/MWh)	(2023 \$/Year)
	Combined Cycle Combustion Turbine	NGCC - Siemens SGT-800 1x1	25	74.7	7,172	\$162.3	\$2,173	\$2.97	\$1,405,237
		NGCC - Siemens SGT-800 2x1	25	143.5	7,172	\$320.9	\$2,236	\$2.97	\$2,873,631
		NGCC - Siemens SGT-800 3x1	25	224.0	7,172	\$471.7	\$2,106	\$2.97	\$4,310,446
	Simple Cycle Combustion Turbine	Siemens SGT-800	20	52.4	9,818	\$83.9	\$1,601	\$5.24	\$489,992
		2 x Solar Titan 250	20	52.6	10,851	\$97.2	\$1 ,849	\$5.48	\$1,216,904
		2 x General Electric LM2500+G4	20	55.9	10,358	\$123.7	\$2,213	\$5.48	\$1,244,141
	Reciprocating Internal Combustion Engine	RICE - MAN 3x20 MW	20	59.0	8,680	\$94.7	\$1,605	\$6.78	\$2,138,699
	Nuclear [Small Modular Reactors (SMR)]	Participant in 600 MW SMR Project	40	100.0	10,447	\$865.3	\$8,653	\$3.50	\$11,082,258
	Biomass	Steam Turbine Fueled with Urban Waste Wood	30	30.0	10,500	\$286.7	\$9,556	\$5.64	\$7,333,238
VЫ	Supply-Side Resource	Description	PPA Term	Max. Capacity Summer	Net Full Load Heat Rate Summer	Capital Costs	Capital Costs per kW	Energy Price	Capacity Price
			Years	Net MW	Btu/kWh	(2023 \$, Millions)	(2023 \$, Summer)	(2025 \$/MWh)	(2025 \$/kW-Mo)
	Utility Scale Solar PV	20 Year PPA for 75 MW	20	41.2	N/A	N/A	N/A	\$47.35	N/A
	Storage	20 Year PPA for 50 MW of 4 Hour Storage	20	50.0	N/A	N/A	N/A	N/A	\$12.00

Solar PV PPA Pricing

- scale solar PV
 (w/o energy
 storage) overnight
 capital cost
 estimates in the
 2022 Annual
 Technology
 Baseline produced
 by the National
 Renewable Energy
 Laboratory (NREL).
- 20 Year PPA price is fixed for the entire contract period.

Battery Energy Storage System PPA Pricing

- Based on battery
 energy storage
 overnight capital
 cost estimates in
 the 2022 Annual
 Technology
 Baseline
 produced by the
 National
 Renewable Energy
 Laboratory
 (NREL).
- 10 Year PPA price is fixed for the entire contract period.
- 4 Hour storage duration

Open Discussion and Next Steps

Cantrece Jones Acuity Design Group

Open Discussion and Next Steps

- Upcoming IRP Stakeholder Engagement Meetings
 - Meeting 3 Potential IRP Sensitivities and Scenarios 7/26/23
 - Meeting 4 Preliminary Modeling Results 10/19/23
 - Meeting 5 Refined Modeling Results and GRU's Path Forward
 1/10/24
- We value YOUR feedback